
Syntax exercises in CS1
John Edwards

john.edwards@usu.edu
Utah State University

Logan, Utah

Joseph Ditton
jditton.atomic@gmail.com

Utah State University
Logan, Utah

Dragan Trninic
dragan.trninic@gess.ethz.ch

ETH Zurich
Zurich, Switzerland

Hillary Swanson
hillary.swanson@usu.edu
Utah State University

Logan, Utah

Shelsey Sullivan
shelsey.sullivan@usu.edu
Utah State University

Logan, Utah

Chad Mano
chad.mano@usu.edu
Utah State University

Logan, Utah

ABSTRACT
This paper investigates the idea of teaching programming language
syntax before problem solving in Introductory Computer Program-
ming (CS1). Theories of procedural skill acquisition imply that
syntax should be taught with a pedagogy and curriculum quite
different from that used in teaching problem solving. We draw
from this literature to propose a practice-based pedagogy and cur-
riculum to teach students syntax before they learn its application,
something we call a "syntax-first" pedagogy, which uses skilled
performance in syntax to scaffold learning of problem solving. We
report results of a controlled study investigating whether learning
syntax using pedagogy suitable for procedural skill acquisition (e.g.
repetitive practice) prior to learning problem solving influences
student performance. A syntax-first pedagogy is complementary
to almost any other teaching approach: in our study, simply adding
carefully designed syntax exercises to an existing CS1 course re-
sulted in higher exam scores, lower student attrition, and evidence
that plagiarism rates may be lower.

CCS CONCEPTS
• Social and professional topics→ CS1.

KEYWORDS
CS1, syntax, cognitive load, memory

ACM Reference Format:
John Edwards, Joseph Ditton, Dragan Trninic, Hillary Swanson, Shelsey
Sullivan, and Chad Mano. 2020. Syntax exercises in CS1. In Proceedings of
ICER ’20: International Conference on Computing Education Research (ICER
’20). ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/nnnnnnn.
nnnnnnn

1 INTRODUCTION
Introductory Computer Programming (CS1) is a first college course
in computer programming that is infamously challenging, with

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICER ’20, August 10–12, 2020, Dunedin, New Zealand
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

failure rates as high as 35% [33]. Substantial effort has been put
into discovering why CS1 is chronically problematic, and many
findings target student frustration with programming language
syntax [9, 23, 28, 45]. However, syntax requires very little cognitive
effort [36], so why should it cause so much student frustration?
In a sense, it could, and possibly should, be the easiest part of
programming rather than the biggest source of frustration.

Upon identification of syntax as an obstacle, pragmatic researchers
and practitioners began developing and using block-based lan-
guages such as Alice [7] and Scratch [39]. Block-based languages
prevent syntax errors so the student can focus on problem solving.
While the syntax-free approach has been successful by many mea-
sures, student frustrations return when transitioning to a text-based
language [51]. This makes sense: problem solving and the ability
to type code are different skills, and proficiency in problem solving
does not lead to proficiency in typing error-free code.

In the present work we explore the idea of focusing first on
programming language syntax and then teaching problem solving
once students have achieved proficiency in the necessary syntac-
tical constructs. The idea of isolating and mastering syntax using
established techniques for procedural skill acquisition has, perhaps
surprisingly, not been investigated in depth. We further investigate
using syntax proficiency as a scaffold for learning problem solving.

The theory behind using separate pedagogy and curriculum for
syntax and problem solving is well established. We can look at
typing code as a skill, where a skill is defined as "goal-directed, well
organized behavior that is acquired through practice and performed
with economy of effort" [38] (as cited by Johnson [20]). It is gen-
erally agreed upon that skill acquisition is done through practice,
while acquisition of more complex knowledge and abilities, such as
problem solving, is actively debated.

In addition to exploring the theory behind isolating syntax learn-
ing and using it as a scaffold for higher-cognitive learning, this
paper reports results from a study that implemented a practice-
based curriculum for learning programming language syntax for
the test group, and identical curriculum for problem solving for
both groups. Analyses of keystroke data and project/exam scores
support the notion that practice-based learning of syntax is benefi-
cial to student performance, and are consistent with the hypothesis
that using syntax proficiency as a scaffold for learning problem
solving results in improved student outcomes. We seek to answer
the following research questions in a CS1 context:

RQ1 How does a syntax-first pedagogy affect student attrition?

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

ICER ’20, August 10–12, 2020, Dunedin, New Zealand Edwards et al.

RQ2 How does a syntax-first pedagogy affect project and exam
scores?

RQ3 How does a syntax-first pedagogy affect the time required
for students to complete programming projects?

Our overall hypothesis is that syntax exercises result in improved
student outcomes and student attitudes. See Section 3.4 for specific
hypotheses that drive our study.

In this paper, we show that syntax exercises have a strong effect
on student attitudes and outcomes. We suggest that our results not
only have important theoretical implications, but also that they have
strong practical application. Syntax exercises are complementary
with virtually all CS1 pedagogies and curricula and can be added
to a course with very little disruption to an existing syllabus. A
potential criticism of our work is that improved outcomes from
additional student effort is not a novel finding; in response, we show
that well-designed syntax exercises can result in disproportionately
large improvements in student outcomes.

This paper first discusses the theory behind our approach and
other related work (Section 2), followed by our methods (Section 3),
results (Section 4), discussion (Section 5) and conclusions (Section
6).

2 THEORY AND RELATEDWORK
2.1 Syntax and cognitive load
To drive our discussion of syntax as a barrier to success we make
three fundamental observations of CS1 pedagogy:

• Observation 1: CS1 teaches a number of skills [12]. We focus
on two distinct skills: the first skill is the syntax of a computer
programming language, and the second is problem solving using
the language as a tool. (Using du Boulay’s taxonomy, we define
syntax as a combination of notation and structures, and problem
solving as the specification, testing, and debugging portions of
pragmatics [12].)

• Observation 2: Learning of language syntax requires lower order
thinking than does problem solving [36]. However, instructors
generally teach syntax and problem solving simultaneously as
a single conflated concept. Indeed, classroom instructors often
fail to even emphasize to their students that syntax and problem
solving are two different things.

• Observation 3: Language syntax is often a major barrier to stu-
dent success in CS1 [9, 23, 45], and has been called an "extraneous
cognitive load" [28, 47]. One approach to solving the syntax prob-
lem is to find a programming language with syntax that is more
easily learned for students [45]. Another approach is to remove
syntax entirely [7, 39].

One potential reason that syntax is a barrier is that students are
expected to simultaneously grasp the syntax of a computer language
and problem-solve using the language as a tool. In other words, the
syntax of a language (i.e., a tool) may be conflated with problem
solving (i.e., tool use). If so, students’ ability to pay attention to
and learn from problem solving is compromised by their lack of
familiarity with using the tool.

The concern is that, when students lack the ability to fluently
use the tools at their disposal, their problem-solving processes will
require more resource-intensive cognitive engagement. In other

words, they will struggle with the tool itself, rather than tool-use.
This burdens the working memory capacity, which is limited and
required for all conscious processing [34]. In turn, students are
unlikely to be able to devote cognitive resources to both wrestling
with syntax and engaging in problem-solving (see, e.g., [22, 47]).
This may be avoided if students could first develop a baseline syntax
familiarity prior to and as preparation for more formal instruction.

There are numerous accounts of skill acquisition (e.g., [4, 11, 18]).
A point of agreement among all is that skillful actions become
automated. Automation frees up cognitive resources, which may
subsequently be leveraged for problem solving. Therefore, one way
we can prepare students for problem solving is by automating their
production of syntactically-correct code.

The present intervention draws on this fundamental idea of re-
ducing students’ unnecessary cognitive burden by automating their
production of code syntax, thereby enhancing their learning. We
accomplish this by providing students with exercises that develop
their fluency with syntax, preparing them for future learning from
instruction (cf. [43, 49]).

A syntax-first approach is not new. Linn and Dalbey [27] pro-
posed a chain of three cognitive accomplishments of which knowl-
edge of single language features was the first. Xie et al. [52] put
writing correct syntax second in their sequence of four program-
writing skills (behind program tracing, similar to Schulte’s block
model [42] which emphasizes reading comprehension). Multiple
works suggest that the ability to write correct syntax would aid in
later problem solving [1, 5, 29]. The problem is that, as Xie et al.
suggest, "although there have been many theories with implications
for CS1 instructional design for programming skills, few have been
translated to concrete instruction" [52].

2.2 Practice
Skill acquisition is obtained through practice [20]. In the three
phases of skill acquisition suggested by Fitts and Posner [18] (see
also [17]), the second (fixation) and third (automation) phases both
rely heavily on practice to fix the skill and then achieve nearly error-
free performance even in the presence of distractors. Skilled per-
formance reflects past experience [44], requiring many exposures
to work together [31]. Even child prodigies show steady progress
through practice [15], and Ericsson and Charness [16] argue that
practice is more important than genetics. Repetition is a critical
component to practice for automaticity [30], with response time
in autonomous performance decreasing as a power function of the
number of exposures [30, 35]. Drawing on the robust theory that
repetitive practice supports development of autonomous skill per-
formance, our design of syntax pedagogy is centered on repetition
with the goal of fixation and automation of typing syntax.

2.3 Similar studies
As mentioned, research into the effects of repetitive practice of
syntax, or of any specific pedagogy for syntax learning, has been
thin, although a few recent studies show increasing interest in the
topic. Leinonen et al. [25] conducted a controlled study in which
students in the test group were given a version of syntax exercises
before working on their regularly-scheduled programming projects.
Although none of their results were statistically significant, their

Syntax exercises in CS1 ICER ’20, August 10–12, 2020, Dunedin, New Zealand

measurements of number of keystrokes to project completion and
time to project completion were mixed, with test students requiring
more effort on some projects and less effort on others. The authors
conclude that syntax exercises may not be meaningful, particu-
larly in their context where programming projects are small and
very frequent. However, their concept of syntax exercises differs
fundamentally from ours: in our study, syntax exercises are very
small, very numerous, and are designed such that errors are highly
infrequent. Leinonen et al. [25] expect students to make syntax er-
rors in the exercises and, in fact, designed the tool to automatically
highlight syntax errors. Thus, their tool may result in greater cogni-
tive effort, while our exercises are designed to engage autonomous,
error-free execution as early as possible.

A recent study by Gaweda et al. [19] used a similar approach to
Leinonen et al. [25], where students simply re-typed code shown
to them while the tool highlighted lines with errors. In this study,
students who completed the exercises had higher exam scores, on
average, and a negative correlation of number of exercises com-
pleted with build failures in programming projects. However, the
group completing the exercises was self-selected, calling causitive
claims into question.

Anecdotal evidence from the efforts of Portnoff [37] in an inner-
city high school suggest that memorizing code snippets decreases
syntax errors and increases student motivation. Importantly, a par-
ticular increase in motivation was noted in students who would
not have been expected to succeed.

The study most similar to ours is an exploratory study by Ed-
wards et al. [14] that uses high-frequency syntax exercises similar
to our own. Their results were consistent with the idea that syntax
exercises would improve student outcomes and attitudes, however,
potentially confounding variables hobbled their ability to make
any definitive claims. Nevertheless, decreases in student frustration
and increases in project/exam scores were observed, suggesting the
need for a larger, better-controlled study.

3 METHODS
In this section we discuss the design of our study, measurement
instruments, and specific hypotheses.

3.1 Study design
Our study was conducted over weeks 3-7 (five weeks in all) in
each of two consecutive semesters of a CS1 course at a mid-sized
public university in the western United States. The CS1 course is
for majors and non-majors, and fulfills a STEM general education
requirement. We call the first semester students the control group
and the second semester students the test group. Data reported in
this paper are drawn only from students that opted into the study
according to our IRB protocol, although all students in the course
were given identical treatments. See Table 1 for the course layout.

The control and test groups were comparable in terms of GPA
and Math ACT score (see Rountree et al. [41] for a discussion of
math ability as a predictor for success in programming). See Figure 1.
Median GPAs in the control and test groups were 3.40 and 3.54,
respectively, with identical interquartile ranges of 0.8; the distribu-
tions of the two groups were similar (Mann-WhitneyU = 30132.0,
ncontrol = 259, ntest = 251, p = 0.154). Median Math ACT scores for

w3 w4 w5 w6 w7
M W F M W F M W F M W F M W F

exercises x x x x x x x x x x x x x
project p4 p5 p6 p7 p8
exams e1

Table 1: Course layout of weeks 3-7, the weeks of the study.
The course was a total of 14 weeks long. Exam2 was at the
end of week 9. Exercises were done as marked only in the
semester of the test group.

0 2 4
GPA

0.0

0.2

0.4

0.6

0.8

de
ns

ity

GPA distribution
control
test

(a)

10 20 30 40
ACT Math

0.000

0.025

0.050

0.075

0.100

de
ns

ity

ACT Math distribution
control
test

(b)

Figure 1: Distribution between the control and test groups
of (a) GPA and (b) Math ACT scores.

both groups were identical at 27, with identical interquartile ranges
of 5.0; the distributions of the two groups differed in a rank-sum
test (U = 22522.0, p = 0.0134).

During the five weeks of the study students had in-class lecture
three days a week and one programming project due each Friday.
Beginning in the third week we introduced "syntax exercises" to
the test group, with week seven being the final week exercises were
available. Three times per week, before each class lecture, students
in the test group were required to log into web-based software
called Phanon and complete between 20 and 60 syntax exercises.
Exercise design is described in detail in the next section.

Each Friday a programming project was due. Projects were la-
beled p4, p5, p6, p7, and p8 (projects p1, p2, and p3 were non-
programming projects on background material and were completed
before syntax exercises were introduced). Projects p4-p8 were de-
signed to gradually increase in difficulty. Each project had two
parts. One part was based on Turtle graphics and required students
to draw specific pictures, such as a snowman or dart board. The
other part of the project was a text-based program such as a com-
pound interest calculator; game show simulator; or rock, paper,
scissors game. No starter code was given for projects. Projects were
graded by course Teaching Assistants. The Phanon software, used
for syntax exercises, was also used as the IDE for programming
projects. Project code must be submitted through Phanon, so even
if a student wrote their code with a different IDE they must at least
paste their result into the Phanon editor in order to submit it.

All syntax exercises and programming projects were completed
in the Python programming language.

At the end of week 3 of the study (week 5 of the course) amidterm
exam, called e1, was given. The exam was composed of four types
of questions:

ICER ’20, August 10–12, 2020, Dunedin, New Zealand Edwards et al.

• Write One - questions where students were asked to either write
or modify a line of code or to provide which operator or function
performs a certain function. Example: To comment a single line,
what character(s) are used?

• Interpret One - questions where students were asked if a line of
code was correct, to state what results the code would have, or to
identify certain types of programming constructs, such as string
literals. Example: What will be the output/result of the following
program? print(5+2).

• Interpret More - like Interpret One but with more than one line of
code. Example: The identifier val should be assigned a string that
is received from the user. Which of the following lines of code will
accomplish this?

• General - questions that asked about languages, types of errors,
conventions, software development processes, etc. Examples:
According to standard naming conventions, which of the following
would be a proper name for a constant value that designates the
maximum value? andWhat type of error prevents a program from
running at all?

Exam e1 had 8Write One, 11 Interpret One, 12 Interpret More, and
22 General questions. The exam was graded using automated tests.

The programming projects and exams were identical for both
control and test groups. Project graderswere different across semesters.
Each semester had three sections, for a total of six sections. All
sections but one were taught by the same instructor.

3.2 Syntax exercise design
Each syntax exercise is assessed using automated tests and is de-
signed to take the student between 20 and 40 seconds. Each exercise
presents a prompt such as "This code counts from 1 to 10. Change
the code so that it counts from 1 to 12." Many exercises include a
hint, such as, "Hint: change the 10 to a 12." Once the student makes
the required changes to the code and successfully runs the program
they are briefly presented with a congratulatory banner and are
allowed to proceed to the next exercise.

The exercises gradually increase in complexity but always in
such away that the student needn’t design code, nor even think very
long about what they need to do. For example, after modifying or
filling missing portions of multiple for loops, a student is instructed
to write an entire for loop that is identical or almost identical to
one they have recently modified. The subsequent exercises have the
student write entire for loops until, at the conclusion of the session,
the student may have typed more for loops than they might type
over the entire semester of programming projects. Progression of
the exercises for other syntax constructs is similar. Only rarely
do instructions explain programming or syntax concepts so as to
keep cognitive burden low [48] and to allow conceptions to emerge
from experiential execution of the exercises [40]. A sample series
of exercises are in the appendix.

Each set of exercises is designed to take no more than 10 minutes
for any student. The software also allows for "mulligans," where
the student can see the solution for an exercise if they get stuck.
Mulligans are allowed no more than once every 30 minutes. Copy
and paste are disabled in the syntax exercise editor, forcing the
student to key in each character required by the solution.

It may be instructive to note what syntax exercises are not. They
are not assessments of a student’s knowledge or ability. Indeed,
a student likely will never have seen the syntax construct being
practiced. Exercises do not teach how a construct is used. For ex-
ample, an exercise prompt would not tell the student that print
statements would be useful for debugging, or that an if statement
would be useful for conditional execution. Indeed, while students
may have no idea what the construct is used for by the end of
the session, they are at least confident in their ability to write the
construct.

In our design of syntax practice, students read, modify, and
complete about 100 code snippets every week. This approach is
supported, in part, by the work of Lahtinen et al. [24], who studied
survey results regarding difficulties in learning to program. They
report that students and teachers felt that far more learning was
gained from example programs than any other type of learning
material.

The syntax exercises are scheduled such that the class session
following exercises on a given construct discuss the construct, what
it is used for, and how it is used to solve problems. With this curricu-
lum design, syntax proficiency gained during the syntax exercises
scaffolds learning of problem solving in two ways. First, syntax
exercises are designed to promote student confidence and interest,
encouraging engagement during class. Second, and most impor-
tantly, the instructor can feel free to show and discuss code snippets
that might ordinarily have left many students lost and confused.
Having familiarity with the syntax, students can read code snippets
and not only follow along, but also start to understand context
and purpose. Outside of the classroom, students working on their
programming projects can be more confident in their ability to
implement code after they have designed an algorithm to solve
the problem. They can focus more on the more challenging task
of problem solving, reducing their cognitive load as they are not
spending time on frustrating syntax constructions and errors.

3.3 Measures and data
The Phanon software used for both syntax exercises and program-
ming projects captures timestamped keystrokes as well as copy and
paste events (for projects only, since copy and paste are disabled
for exercises) and run events. We measure effort on projects using
the number of keystrokes for a student. We measure attrition by
comparing the number of students that attempted a project to the
number of students that attempted project p4 (the first project in
the study). We define attempted as having executed at least one
event (e.g. keystroke, paste, run, etc). We also use project scores
(graded by humans) and exam scores (graded by automated tests).

In our analysis we perform t-tests and 2-sided proportion z tests.
We report p-values of our statistical tests as just one component
among others that together contribute to understanding of our
results [50]. We do not make threshold-based claims of statistical
significance, nor do we use p-values to indicate effect size or im-
portance [6]. In order to interpret p-values appropriately, we report
that we conducted 12 statistical tests with accompanying signifi-
cance measures in this paper. Effect sizes are reported as Cohen’s d
and h measures.

Syntax exercises in CS1 ICER ’20, August 10–12, 2020, Dunedin, New Zealand

p4 p5 p6 p7 p8
project

94

96

98

100

pe
rc

en
t

% students to attempt
control
test

Figure 2: Percentage of students who attempted project p4
that attempted projects p5 through p8. Note that the y-axis
starts at 94% to emphasize differences.

3.4 Hypotheses
Based on our research questions and theoretical framework we
have the following hypotheses:

H1 The attrition rate will drop.
H2 Project and exam scores will increase on average.
H3 Students will complete their projects more quickly, i.e., with

fewer keystrokes.

4 RESULTS
We measure sample size by the number of participating students
that attempted project p4, the first project in the period of study. The
control group had 271 students and the test group had 254 students.
On average, students executed 4401 keystrokes per project, for a
total of 11.6 million keystrokes analyzed.

4.1 Attrition
Our first hypothesis was that the attrition rate in the test group
(who had syntax exercises) would be lower than the control group
(who did not have syntax exercises). See Figure 2. Of all students
who attempted project p4, the first programming project during the
study, 94.1% of control students attempted project p8, while 97.2%
of test students attempted p8, for a reduction in attrition of 3.1%
over the five weeks of the study (z = −1.74, p = 0.082, h = −0.16).
Results for project p7, which was not as difficult as p8, were less
strong (from 95.2% to 97.6% attempt rate; z = −1.47, p = 0.140,
h = −0.13), while less difficult projects earlier in the course (p5 and
p6) saw little change. If the addition of syntax exercises was the
cause of the reduction in attrition for p7 and p8 then it appears that
the effect of the exercises may be weaker for easier projects.

It is possible that attrition was reduced not by the procedural skill
acquisition elements of syntax exercises but by the gamification
and low-fear elements in the syntax exercise experience. Indeed,
the gamification elements were introduced to enhance the low-fear
nature of syntax exercises, yet may have complicated interpretation
of the results.

project control test

p4 96.8 ± 11.9 96.5 ± 13.4
p5 92.7 ± 16.9 89.3 ± 21.3
p6 84.8 ± 26.8 84.4 ± 25.3
p7 90.4 ± 25.4 89.5 ± 24.9
p8 78.8 ± 34.1 77.7 ± 31.0

exam1 71.9 ± 15.6 78.9 ± 11.9
exam2 61.6 ± 17.4 63.4 ± 22.4

Table 2: Mean scores with standard deviations of projects
and exams.

control test
m mean mean t p

Write One 8 70.7 86.2 -7.61 < 1e−4
Interpret One 11 73.0 83.6 -6.12 < 1e−4
Interpret More 12 63.7 65.9 -1.20 0.230

General 22 74.8 84.0 -5.81 < 1e−4

Table 3: Means and t-test statistics for differences in scores
on exam e1 by question type.m is the number of questions
of that type.

4.2 Project and exam scores
Our second hypothesis was that project and exam scores among
the test group will be higher than those of the control group on
average. The results (see Table 2) held two surprises. The first is
that the assignment scores of the test group were actually lower
than that of the control group. The second surprise was that, while
the assignment score differences were opposite our hypothesis, the
exam scores were not only consistent with our hypothesis, but the
effect size exceeded our expectations: exam e1 was given at the
end of the third week of syntax exercises and the scores for the
test group were 7 percentage points higher than the control group
(t(264) = −5.87, p < 0.001, d = −0.51), a far larger increase than
we expected. In Table 3 we see that all question types showed a
increase in score for the test group, with the strongest evidence of
a statistically observable effect in the Write One, Interpret One, and
General question types.

The effect of exam score improvement is diluted in exam e2,
with test group scores just less than 2% higher on average than
control group scores (t(264) = −1.04, p = 0.299, d = −0.09). This
is consistent with our hypothesis because exam e2 took place two
weeks after the conclusion of the administration of syntax exercises,
so half of the exam was on material not supplemented by syntax
exercises.

An alternative explanation for the improvement in exam per-
formance could be that the second semester of the study used
an identical exam to the first semester for comparison purposes,
whereas the exam was changed each semester prior to the study.
This put the students in the test group at an advantage if they chose
to cheat, which could explain the improvement in the score for the
exam e1. However, this explanation breaks down somewhat when
explaining the reduction in improvement for exam e2.

ICER ’20, August 10–12, 2020, Dunedin, New Zealand Edwards et al.

The result that students with syntax exercises got lower project
scores than the control group is unexpected, but the fact that the
effect is reversed when is comes to the exam suggests that some
other variable may be coming into play. We discuss the possibility
of a reduction in plagiarism as an explanation for project-exam
differences in Section 5.1. Of course, the lack of effect in project
scores also suggests that perhaps the null hypothesis should not be
rejected.

4.3 Number of keystrokes on projects
Our final hypothesis was that students in the test group would
complete their projects with fewer keystrokes. Again, a surprise:
students in the test group required more keystrokes on average. At
project p4 (the first project in the study) both groups used roughly
the same number of keystrokes but by project p8 they had diverged.
In project p8 the median number of keystrokes in the control group
was 3896 (IQR: 1284 − 7051) while the test group median was 7207
(IQR: 3963− 10095). See Figure 3a for the distribution of keystrokes.
In investigating this result we discovered that the control group
had many more projects with large amounts of code pasted into
the editor than the test group. (Recall that only the syntax exercises
had paste disabled, so students were able to cut and paste as normal
in the programming projects.)

The difference in pasting behavior between groups and plagia-
rism as a possible cause are discussed in detail in Section 5.1. We
control for large pastes by excluding all projects for which the
total number of pasted characters exceeded the total number of
keystrokes by a factor of four. (Four is a somewhat arbitrary factor,
but it is robust: we tested with 1, 2, 8, and 16 with very similar re-
sults.) This measure is meant to flag projects, which we call "pasted"
projects, where the work was done primarily outside of the Phanon
IDE. See Figure 3 for the effect of controlling for pasting. Figure 3a
shows the normalized distribution, regardless of whether projects
were pasted or not, of the number of keystrokes for project p8.
(Other projects show similar behavior, as shown in Figure 4.) Both
control and test groups have a somewhat normal appearing curve
between 5000 and 10000 keystrokes, but they both also have a
spike near zero, with the control group spike dwarfing that of the
test group. From Figure 3b, which is the same chart but excluding
pasted projects, we see that pasted projects strongly skewed the
number of keystrokes toward zero, with the larger number of pasted
projects in the control group skewing the results further than the
test group. We see from Figure 3c that all pasted projects have
very few keystrokes, showing that pasted projects were, indeed,
developed outside of the students’ Phanon IDE, i.e., the high paste
rates were not caused by students simply cutting and pasting their
code over and over.

Returning to our hypothesis that students in the test groupwould
require fewer keystrokes, we controlled for pastes in keystroke
distributions (see Figure 5). Even after controlling for pastes our hy-
pothesis was still opposite what actually happened: again, students
with syntax exercises requiredmore effort to complete projects than
those without. We see three possible explanations for the increase
in effort. The first is that an uncontrolled variable is the cause. Of
the possible variables listed in our threats to validity (Section 5.5)
we believe the most likely variable to be the difference in student

0.0 0.5 1.0 1.5 2.0 2.5
number of keystrokes 1e4

0.0

0.5

1.0

1.5

2.0

de
ns

ity

1e 4 p8 keys - all
control
test

(a)

0.0 0.5 1.0 1.5 2.0 2.5
number of keystrokes 1e4

0.00

0.25

0.50

0.75

1.00

1.25

de
ns

ity

1e 4 p8 keys - no pastes
control
test

(b)

0.0 0.5 1.0 1.5 2.0 2.5
number of keystrokes 1e4

0

10

20

30

40

50

de
ns

ity

p8 keys - pastes only
control
test

(c)

Figure 3: Normalized distribution of number of keystrokes
used in completing project p8. Both control and test groups
have curves that would appear to be somewhat normal ex-
cept for the spike near zero, which are primarily students
who pasted their code into Phanon. (a) Distribution of num-
ber of keystrokes for all submissions. (b) Distribution of
number of keystrokes for only projects that were not pasted
(see Section 4.3). (c) Distribution of number of keystrokes for
only projects that were pasted. Not normalized.

Syntax exercises in CS1 ICER ’20, August 10–12, 2020, Dunedin, New Zealand

0.0 0.5 1.0 1.5 2.0 2.5
number of keystrokes 1e4

0.0
0.5
1.0
1.5
2.0
2.5

de
ns

ity

1e 4 p4 keys - all
control
test

(a)

0.0 0.5 1.0 1.5 2.0 2.5
number of keystrokes 1e4

0.0

0.5

1.0

1.5

2.0

2.5

de
ns

ity

1e 4 p5 keys - all
control
test

(b)

0.0 0.5 1.0 1.5 2.0 2.5
number of keystrokes 1e4

0.0

0.5

1.0

1.5

de
ns

ity

1e 4 p6 keys - all
control
test

(c)

0.0 0.5 1.0 1.5 2.0 2.5
number of keystrokes 1e4

0.0

0.5

1.0

1.5

2.0

de
ns

ity

1e 4 p7 keys - all
control
test

(d)

Figure 4: Normalized distribution of number of keystrokes
used in completing projects p4-p7.

0 2500 5000 7500 10000 12500 15000 17500 20000
number of keystrokes

4

5

6

7

8

pr
oj

ec
t

Keystrokes per project
group

control
test

Figure 5: Number of keystrokes per student in projects. Out-
liers are not shown. Student submissions in which signifi-
cant amounts of code were pasted are not included.

preparation and ability from spring to fall semester. Given the simi-
lar ACT and math GPA distributions shown in Figure 1 we see this
as somewhat unlikely.

A second explanation is that syntax exercises cause a direct
increase in keystrokes: possibly students are more practiced at
typing and thus tinker more with the code or are more likely to
type everything when refactoring instead of moving code with cut
and paste.

A third explanation is that because of syntax exercises, or some
other factor, less-prepared students are attempting and remaining
engaged with programming projects. Reduction in attrition could
cause this: students who normally would have dropped out or
disengaged from the course may have continued on and required
more effort to complete the projects than students who were less
likely to drop out. Fewer students from the test group disengaged

0 250 500 750
digraph latency

0.000

0.001

0.002

0.003

0.004

de
ns

ity

Project p4 digraph latencies
control
test

(a)

0 250 500 750
digraph latency

0.000

0.001

0.002

0.003

0.004

de
ns

ity

Project p8 digraph latencies
control
test

(b)

Figure 6: Distribution of digraph latencies for (a) project p4
and (b) project p8. Distributions for the other projects are
similar.

and those are the very students that we would expect to require
more time to complete their projects. Reduction in plagiarism could
also contribute as we discuss in Section 5.1.

Interpretation of the increase in number of keystrokes is difficult
to interpret in our study design. We do note, however, that average
digraph latencies for project p4 are 35ms lower, on average, for the
test group (t(784) = 3.88, p = 0.0001, d = 0.18), and project p8 has
similar results (see Figure 6). Digraphs are pairs of keystrokes and
are often used tomeasure and predict student performance [13]. The
latency of a digraph is the amount of time elapsed between the two
keystrokes of the digraph, and is typically measured in milliseconds.
Thus, faster typists have lower digraph latencies. In Figure 6 we
consider the distribution of digraphs that are between 30 and 750
ms, as faster than 30 ms indicates an error in measurement and
greater than 750 ms indicates disengagement from typing [10, 26].
A marked decrease in the latencies for students in the test group
indicates that they are taking less time on projects at least in the
typing of the code. We note that while a difference in attrition
between the control and test groups doesn’t begin to appear until
the third and fourth projects, the difference in digraph latency
appears immediately, in the very first programming project during
the study (Figure 6a). This is because the syntax exercises target
programming constructs that are used in the project that follows the
exercises, so the effect is immediate, while attrition differences are

ICER ’20, August 10–12, 2020, Dunedin, New Zealand Edwards et al.

p4 p5 p6 p7 p8
project

10

15

20

pe
rc

en
t

% students who pasted
control
test

Figure 7: Percentage of students who pasted code across
projects. Note that the y-axis starts at 10% to emphasize dif-
ferences.

latent due to the easiness of early projects followed by increasing
project difficulty.

5 DISCUSSION
In this section we discuss plagiarism as a potential hidden variable
that could help explain some of our unexpected measurements. We
also relate our results back to cognitive load theory and discuss
practice as an exploration tool. We then discuss some practical
implications of our results.

5.1 Plagiarism
We here explore how plagiarism may have played a role in the
increased keystroke counts and the fact that exam scores went up
while project scores held steady or decreased.

We begin by noting the difference between the test and control
groups in the number of students who pasted their project code. In
Figure 7 we see that in project p8, 24% of control students pasted
their code, while only 11% of test students pasted (z = 3.79, p =
0.0002, h = 0.35). Recall from Section 4.3 that we consider a project
to be "pasted" when the total number of pasted characters exceeds
the total number of keystrokes by a factor of four, so the number of
keystrokes must be very small relative to the amount of pasted code.
We explore two possible causes of the drop in "pasted" projects.

First, we discovered that a small number of students, usually
high-performing students who had prior programming experience,
wrote their code in a more sophisticated IDE (typically PyCharm)
and then pasted their solutions into Phanon. It is possible that fewer
students in the test group used an IDE other than Phanon because
of their familiarity with Phanon – syntax exercises could only be
completed in Phanon since paste was disabled for the exercises.
Thus, student familiarity with Phanon could be an explanation for
the drop in pasted projects.

A drop in plagiarism could be a second reason the test group had
fewer pasted projects. While we don’t know whether to attribute
the drop in pasting to a reduction in plagiarism or to a reduction
of writing code in another IDE, we can infer with some confidence
that a reduction in plagiarism is at least a major contributing factor:
recall the decrease in project scores but increase in exam scores in
the test group (Table 2). A high rate of plagiarism naturally leads

to high assignment scores but lower exam scores due to students
not learning the material, explaining Table 2. And similar to the
effects of reduced attrition, the test students who would have pla-
giarized had they been in the control group may very well be the
students who would require more keystrokes to complete a project,
explaining Figures 3a and 5. Additional evidence of a reduction in
plagiarism comes from digraph, or typing speed, analysis (see Fig-
ure 6). While students in the test group were using more keystrokes
to complete projects, they were typing faster, an effect that has been
linked to success in CS1 [13, 26], supporting the claim that, while
students in the test group received lower project scores, they were
more prepared for success in the course, something that couldn’t
be said of students who plagiarize. The hypothesis that plagiarism
is reduced with syntax exercises is consistent with every expected
and unexpected result from our study: syntax exercises resulting
in lower project scores, higher test scores, lower digraph latencies,
and more keystrokes on projects, on average.

5.2 Cognitive load and deeper learning
One emergent finding from this work is that the intervention ap-
pears to have enhanced students’ overall learning in the class, as
indicated by exam results. At a glance, it may seem surprising that
an intervention focused on syntax would have a strong impact on
learning more broadly. However, this is anticipated by theory, at
least in part. Recall that the purpose of preparatory exercises was
not merely to improve syntax, but to reduce the cognitive load
of students engaged in problem solving activities. This would, in
turn, allow students to devote more of their cognitive resources to
problem solving, resulting in greater learning overall.

However, an alternative, or complementary, explanation is also
possible for these results. Writing from an embodied cognition per-
spective, Trninic [48] writes that "repetitive exercises, sometimes
derided as drills, can nonetheless be a fountainhead of insight and
discovery" (p. 146). Drawing on motor skill learning theory [4]
and the neural reuse theory [2], Trninic argues that conceptual
understanding actually emerges from engaging in and reflecting
on varied procedural actions. The importance of varied practice is
crucial, since it provides opportunities for the practitioner to notice
the relevant underlying patterns. Teachers support this process
by challenging the learner to reflect on and signify their actions
"within a discipline’s semiotic system" (p. 149). In other words, it
is not merely that practice results in fluency and automation that
frees up valuable working memory; the very act of repetitive prac-
tice, when exercises are well-designed, provides opportunities for
reflection and deeper learning.

5.3 Implications
While a cursory evaluation of our hypotheses and measurements
overall would indicate mixed results, a careful look suggests that
students with the intervention could be more prepared for success
in CS1.

We note that the study done by Edwards et al. [14] resulted in an
increase of project scores and decrease of time spent on projects, and
one could ask why our measurements were mixed while theirs were
not. In the 2018 study the test group not only had syntax exercises
but they also did 2/3 of their projects in class in a pair programming

Syntax exercises in CS1 ICER ’20, August 10–12, 2020, Dunedin, New Zealand

setting while the control group did theirs using more traditional
methods. The in-class pair programming may have affected both
the attrition and plagiarism rates, making comparison between
their study and ours tenuous.

That said, our study presents a number of important results.
The first is the possible effect of syntax exercises on attrition. The
fact that so few students disengaged when they had syntax exer-
cises has important implications for a course with chronically high
attrition [3]. A second result is the improvement in exam scores, in-
dicating improvement in learning outcomes. A study where syntax
exercises are used through an entire semester would reveal insights
into their effectiveness with more complex syntactical structures
(e.g. nested loops, procedures, classes) as well as the effect of syntax
exercises on final grades.

While conclusions regarding project scores and effort in terms
of number of keystrokes can’t be made, the unexpected possibility
that syntax exercises discourage plagiarism is a strong motivation
for further study. First, a study that isolates the plagiarism variable
would help shed additional light on our conjecture regarding plagia-
rism, although we recognize that such studies are difficult to design
and execute. An additional, and possibly even more revealing study
would be to explore the effects of syntax exercises on attitude and
how that might affect students’ willingness to plagiarize or drop
out. Indeed, while the theories on which we based our hypotheses
and study say a lot about performance, they don’t necessarily have
a lot to say about attitudes.

On a practical note, the results indicate that syntax exercises
have worth and, happily, they require only moderate effort for both
the instructor and the student. From the perspective of instructor
effort, sets of syntax exercises can be created for a given language
and reused across semesters and across instructors. With syntax
exercises designed to be done with little cognitive effort and at a
high rate, and with paste functionality disabled, cheating doesn’t
make a lot of sense as it is more work for the student than it is
worth. So exercises don’t need to be modified between terms even
if exercise solutions are readily available to students. From the stu-
dent’s perspective, syntax exercises are also relatively lightweight.
On average, students spent 8 minutes on each set of exercises, for a
total of 24 minutes per week. Indeed, in light of the potential criti-
cism that it is no surprise that additional practice leads to improved
outcomes, we posit that not just any type of additional practice
would yield this much return on investment by the student.

5.4 Expertise reversal effect
While we have suggested that syntax exercises are designed to be
most effective for novice programmers, we have not presented any
direct measurements supporting this, nor do we discard the idea
that they may be effective for experienced programmers as well.
Nevertheless, we must take care to not alienate the experienced
programmer: expertise reversal effect theory describes the phenom-
enon of instructional techniques that are highly effective for novices
losing their effectiveness and even becoming counterproductive
for students with more aptitude [21]. Our anecdotal evidence from
interactions with students suggests that even experienced students
didn’t mind the exercises and may have found them to be helpful
to help cement fluency [46].

5.5 Threats to validity
Our study was conducted across two semesters with the control
group in the spring and the test group in the fall, possibly causing
sample bias. One instructor taught five of the six sections, with
a different instructor teaching one section in the spring. Neither
instructor was involved in the study during the study period beyond
agreeing to use identical teaching and assessment methods across
both semesters and using syntax exercises (written by the first
author) in the fall. While both semesters of students had the same
access to a tutoring lab, personnel manning the lab, as well as
graders, were not the same across semesters. The difference in
graders could have had an effect on project scores, but exams were
graded using automated tests.

6 CONCLUSIONS
We have presented results of a study looking at the effect of syntax
exercises in a CS1 course. Simply adding approximately 25 minutes
per week of structured syntax practice to our course resulted in
higher exam scores and lower attrition rates after 5 weeks. Remain-
ing results were mixed: project scores did not improve and project
completion times actually increased. We have suggested reduced
plagiarism rates as a confounding variable which, if true, would
have important implications in courses where cheating is an issue.

If replication studies support our findings, we suggest three
important implications of this work. First, and most importantly,
a very simple modification to a CS1 curriculum with almost no
effort by the instructor (if they use syntax exercises that are already
available) can result in gains in student outcomes. Furthermore,
the added load to the student may be low enough that existing
programming projects needn’t be modified. This highly practical
result can have an immediate effect on CS1 courses.

Second, the results are consistent with the hypothesis that the
proposed pedagogy improves student outcomes particularly among
students who normally may fail or drop the course, possibly in-
creasing CS graduation numbers.

Third, the theories of cognitive load and embodied cognition are
supported by our results and may lead to additional innovations as
we identify ways we can reduce cognitive load, particularly utilizing
repetitive practice that can support and encourage deeper learning.

Our work leads to a number of questions for future work. The
CS1 course used for this study fulfilled STEM general education
requirement for the university, and thus had a mix of CS majors and
non-majors. It is possible that the effects of syntax could be quite
different, especially in courses designed for science and engineering
majors (e.g. [8]), a candidate context for a replication study. In our
study, in-class lectures were essentially the same, including some
content on syntax, unnecessarily so for the test group. We would be
interested to see the effect of new lectures that assume a familiarity
with syntax. Similarly, our exam design did not consider the master
learning approach of syntax exercises – designing our assessments
taking the exercises into account could have been beneficial both
to student outcomes and interpretation of our results [32]. It would
also be interesting to study the effect of implementing practice
schedules [20] in syntax exercises. And lastly, what types of stu-
dents, novices and/or those with experience, are helped most by
syntax exercises is an open question.

ICER ’20, August 10–12, 2020, Dunedin, New Zealand Edwards et al.

APPENDIX
Following is a series of syntax exercises teaching for loops in
Python. This is the first time the student will have seen for loops.
The instructions are shown in italics and the starter code follows
in monospace font.

1. Run the code. Change it so that it outputs

0
1
2
3

Hint: you will change the 3 to a 4.

for i in range (0 , 3) :
print (i)

2. This code has a for loop. Change the code so that it outputs

0
1
2

for i in range (0 , 4) :
print (i)

3. Change the code in the for loop so it outputs

0
1
2
3
4

for i in range (0 , 3) :
print (i)

4. Change the code in the for loop so it outputs

1
2
3

Hint: you will change the 0 to a 1 in the range() call.

for i in range (0 , 4) :
print (i)

5. Change the code so it outputs

13
14
15

for i in range (0 , 1 6) :
print (i)

6. Fill in the missing code to output

1
2
3

for i in :
print (i)

7. Fill in the missing code to output

0
1
2
3
4

for range (0 , 5) :
print (i)

8: Fill in the missing code to output

0
1
2

Hint: the colon at the end of the first line is missing.

for i in range (0 , 3)
print (i)

* Exercises 9-11 not included *

12. Change only line 2. Fix the bug so that the following is
output:

0
1
2
3

Hint: j was accidentally put in the print() call instead of i.

for i in range (0 , 4) :
print (j)

13. Write a for loop to output

0
1
2
3

* Exercises 14-20 not included *

21. Write a for loop to output

12
13
14
15
16

Syntax exercises in CS1 ICER ’20, August 10–12, 2020, Dunedin, New Zealand

REFERENCES
[1] John Robert Anderson, C Franklin Boyle, Robert Farrell, and Brian J Reiser.

1984. Cognitive principles in the design of computer tutors. Technical Report.
CARNEGIE-MELLON UNIV PITTSBURGH PA DEPT OF PSYCHOLOGY.

[2] Michael L Anderson. 2010. Neural reuse: A fundamental organizational principle
of the brain. Behavioral and brain sciences 33, 4 (2010), 245–266.

[3] Theresa Beaubouef and John Mason. 2005. Why the high attrition rate for
computer science students: some thoughts and observations. ACM SIGCSE
Bulletin 37, 2 (2005), 103–106.

[4] NA Bernstein. 1996. Essay 6: on exercises and motor skill. Dexterity and its
development. Lawrence Erlbaum, New Jersey (1996), 171–205.

[5] Duane Buck and David J Stucki. 2000. Design early considered harmful: graduated
exposure to complexity and structure based on levels of cognitive development.
ACM SIGCSE Bulletin 32, 1 (2000), 75–79.

[6] Ronald P Carver. 1993. The case against statistical significance testing, revisited.
The Journal of Experimental Education 61, 4 (1993), 287–292.

[7] Stephen Cooper, Wanda Dann, and Randy Pausch. 2000. Alice: a 3-D tool for
introductory programming concepts. In Journal of Computing Sciences in Colleges,
Vol. 15. Consortium for Computing Sciences in Colleges, 107–116.

[8] Paul Denny, Andrew Luxton-Reilly, Michelle Craig, and Andrew Petersen. 2018.
Improving complex task performance using a sequence of simple practice tasks.
In Proceedings of the 23rd Annual ACM Conference on Innovation and Technology
in Computer Science Education. 4–9.

[9] Paul Denny, Andrew Luxton-Reilly, Ewan Tempero, and Jacob Hendrickx. 2011.
Understanding the syntax barrier for novices. In Proceedings of the 16th annual
joint conference on Innovation and technology in computer science education. 208–
212.

[10] Paul S Dowland and Steven M Furnell. 2004. A long-term trial of keystroke
profiling using digraph, trigraph and keyword latencies. In IFIP International
Information Security Conference. Springer, 275–289.

[11] Hubert L Dreyfus and Stuart E Dreyfus. 1999. The challenge of Merleau-Ponty’s
phenomenology ofâĂĺembodiment for cognitive science. Perspectives on embodi-
ment: The intersections of nature and culture (1999), 103.

[12] Benedict Du Boulay. 1986. Some difficulties of learning to program. Journal of
Educational Computing Research 2, 1 (1986), 57–73.

[13] John Edwards, Juho Leinonen, and Arto Hellas. 2020. A Study of Keystroke
Data in Two Contexts: Written Language and Programming Language Influence
Predictability of Learning Outcomes. In Proceedings of the 51st ACM Technical
Symposium on Computer Science Education. 413–419.

[14] John M Edwards, Erika K Fulton, Jonathan D Holmes, Joseph L Valentin, David V
Beard, and Kevin R Parker. 2018. Separation of syntax and problem solving
in Introductory Computer Programming. In 2018 IEEE Frontiers in Education
Conference (FIE). IEEE, 1–5.

[15] K Anders Ericsson. 2002. Attaining excellence through deliberate practice: In-
sights from the study of expert performance. In The Pursuit of Excellence Through
Education, Michel Ferrari (Ed.). Lawrence Erlbaum Associates Publishers, Mah-
wah, New Jersey, 21–55.

[16] K Anders Ericsson and Neil Charness. 1994. Expert performance: Its structure
and acquisition. American psychologist 49, 8 (1994), 725.

[17] Paul M Fitts. 1962. Factors in complex skill training. Training research and
education 1962 (1962), 177–197.

[18] Paul M Fitts and Michael I Posner. 1967. Human performance. (1967).
[19] Adam M Gaweda, Collin F Lynch, Nathan Seamon, Gabriel Silva de Oliveira, and

Alay Deliwa. 2020. Typing Exercises as Interactive Worked Examples for Delib-
erate Practice in CS Courses. In Proceedings of the Twenty-Second Australasian
Computing Education Conference. 105–113.

[20] Addie Johnson. 2012. Procedural memory and skill acquisition. Handbook of
Psychology, Second Edition 4 (2012).

[21] Slava Kalyuga. 2009. The expertise reversal effect. In Managing cognitive load in
adaptive multimedia learning. IGI Global, 58–80.

[22] Paul A Kirschner, John Sweller, and Richard E Clark. 2006. Whyminimal guidance
during instruction does not work: An analysis of the failure of constructivist,
discovery, problem-based, experiential, and inquiry-based teaching. Educational
psychologist 41, 2 (2006), 75–86.

[23] Sarah K Kummerfeld and Judy Kay. 2002. The neglected battle fields of Syntax
Errors. Australian Computer Society. In Proceedings of the fifth Australasian
conference on Computing education. 105–111.

[24] Essi Lahtinen, Kirsti Ala-Mutka, and Hannu-Matti Järvinen. 2005. A Study of
the Difficulties of Novice Programmers. In Proceedings of the 10th Annual SIGCSE
Conference on Innovation and Technology in Computer Science Education (ITiCSE
’05). ACM, New York, NY, USA, 14–18. https://doi.org/10.1145/1067445.1067453

[25] Antti Leinonen, Henrik Nygren, Nea Pirttinen, Arto Hellas, and Juho Leinonen.
2019. Exploring the Applicability of Simple Syntax Writing Practice for Learning
Programming. In Proceedings of the 50th ACM Technical Symposium on Computer
Science Education. 84–90.

[26] Juho Leinonen, Krista Longi, Arto Klami, and Arto Vihavainen. 2016. Automatic
inference of programming performance and experience from typing patterns. In

Proceedings of the 47th ACM Technical Symposium on Computing Science Education.
ACM, 132–137.

[27] Marcia C Linn and John Dalbey. 1985. Cognitive consequences of programming
instruction: Instruction, access, and ability. Educational Psychologist 20, 4 (1985),
191–206.

[28] Raymond Lister. 2011. Programming, syntax and cognitive load (part 1). ACM
Inroads 2, 2 (2011), 21–22.

[29] Raymond Lister, Elizabeth S Adams, Sue Fitzgerald, William Fone, John Hamer,
Morten Lindholm, Robert McCartney, Jan Erik Moström, Kate Sanders, Otto
Seppälä, et al. 2004. A multi-national study of reading and tracing skills in novice
programmers. ACM SIGCSE Bulletin 36, 4 (2004), 119–150.

[30] GordonD Logan. 1990. Repetition priming and automaticity: Common underlying
mechanisms? Cognitive Psychology 22, 1 (1990), 1–35.

[31] Gordon D Logan. 2005. Attention, Automaticity, and Executive Control. In
Experimental cognitive psychology and its applications, A. F. Healy (Ed.). American
Psychological Association, 129–139.

[32] Andrew Luxton-Reilly, Brett A Becker, Yingjun Cao, Roger McDermott, Clau-
dio Mirolo, Andreas Mühling, Andrew Petersen, Kate Sanders, and Jacqueline
Whalley. 2018. Developing assessments to determine mastery of programming
fundamentals. In Proceedings of the 2017 ITiCSE Conference on Working Group
Reports. 47–69.

[33] Michael McCracken, Vicki Almstrum, Danny Diaz, Mark Guzdial, Dianne Hagan,
Yifat Ben-David Kolikant, Cary Laxer, Lynda Thomas, Ian Utting, and Tadeusz
Wilusz. 2001. A multi-national, multi-institutional study of assessment of pro-
gramming skills of first-year CS students. In Working group reports from ITiCSE
on Innovation and technology in computer science education. ACM, 125–180.

[34] George A Miller. 1956. The magical number seven, plus or minus two: Some
limits on our capacity for processing information. Psychological review 63, 2
(1956), 81.

[35] A. Newell and P. Rosenbloom. 1981. Mechanisms of skill acquisition and the law
of practice. In Cognitive Skills and Their Acquisition, J.R. Anderson (Ed.). Erlbaum,
Hillsdale, New Jersey.

[36] Dave Oliver and Tony Dobele. 2007. First year courses in IT: A bloom rating.
Journal of Information Technology Education: Research 6 (2007), 347–360.

[37] Scott R Portnoff. 2018. The introductory computer programming course is first
and foremost a language course. ACM Inroads 9, 2 (2018), 34–52.

[38] RobertW Proctor and Addie Dutta. 1995. Skill acquisition and human performance.
Sage Publications, Inc.

[39] Mitchel Resnick, JohnMaloney, Andrés Monroy-Hernández, Natalie Rusk, Evelyn
Eastmond, Karen Brennan, Amon Millner, Eric Rosenbaum, Jay Silver, Brian
Silverman, et al. 2009. Scratch: programming for all. Commun. ACM 52, 11 (2009),
60–67.

[40] Wolff-Michael Roth and Jennifer S Thom. 2009. Bodily experience and mathemat-
ical conceptions: From classical views to a phenomenological reconceptualization.
Educational studies in mathematics 70, 2 (2009), 175–189.

[41] Nathan Rountree, Janet Rountree, Anthony Robins, and Robert Hannah. 2004.
Interacting factors that predict success and failure in a CS1 course. ACM SIGCSE
Bulletin 36, 4 (2004), 101–104.

[42] Carsten Schulte. 2008. Block Model: an educational model of program compre-
hension as a tool for a scholarly approach to teaching. In Proceedings of the Fourth
international Workshop on Computing Education Research. 149–160.

[43] Daniel L Schwartz and Taylor Martin. 2004. Inventing to prepare for future
learning: The hidden efficiency of encouraging original student production in
statistics instruction. Cognition and Instruction 22, 2 (2004), 129–184.

[44] Larry R Squire. 1984. Human memory and amnesia. The neurobiology of learning
and memory (1984).

[45] Andreas Stefik and Susanna Siebert. 2013. An empirical investigation into pro-
gramming language syntax. ACM Transactions on Computing Education (TOCE)
13, 4 (2013), 19.

[46] Shelsey Sullivan. 2020. An analysis of syntax exercises on the performance of CS1
students. Master’s thesis. Utah State University.

[47] John Sweller, Jeroen JG Van Merrienboer, and Fred GWC Paas. 1998. Cognitive
architecture and instructional design. Educational psychology review 10, 3 (1998),
251–296.

[48] Dragan Trninic. 2018. Instruction, repetition, discovery: Restoring the historical
educational role of practice. Instructional Science 46, 1 (2018), 133–153.

[49] Tamara Van Gog and Nikol Rummel. 2010. Example-based learning: Integrating
cognitive and social-cognitive research perspectives. Educational Psychology
Review 22, 2 (2010), 155–174.

[50] Ronald L Wasserstein and Nicole A Lazar. 2016. The ASA statement on p-values:
context, process, and purpose.

[51] David Weintrop and Uri Wilensky. 2017. Comparing block-based and text-based
programming in high school computer science classrooms. ACM Transactions on
Computing Education (TOCE) 18, 1 (2017), 3.

[52] Benjamin Xie, Dastyni Loksa, Greg L Nelson, Matthew J Davidson, Dongsheng
Dong, Harrison Kwik, Alex Hui Tan, Leanne Hwa, Min Li, and Andrew J Ko. 2019.
A theory of instruction for introductory programming skills. Computer Science
Education 29, 2-3 (2019), 205–253.

https://doi.org/10.1145/1067445.1067453

	Abstract
	1 Introduction
	2 Theory and related work
	2.1 Syntax and cognitive load
	2.2 Practice
	2.3 Similar studies

	3 Methods
	3.1 Study design
	3.2 Syntax exercise design
	3.3 Measures and data
	3.4 Hypotheses

	4 Results
	4.1 Attrition
	4.2 Project and exam scores
	4.3 Number of keystrokes on projects

	5 Discussion
	5.1 Plagiarism
	5.2 Cognitive load and deeper learning
	5.3 Implications
	5.4 Expertise reversal effect
	5.5 Threats to validity

	6 Conclusions
	References

