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Abstract

We present a parallel quadtree algorithm that resolves between geometric objects, modeling space between objects
rather than the objects themselves. Our quadtree has the property that no cell intersects more than one labeled object.
A popular technique for discretizing space is to impose a uniform grid – an approach that is easily parallelizable but
often fails because object separation isn’t known a priori or because the number of cells required to resolve closely
spaced objects exceeds available memory. Previous parallel algorithms that are spatially adaptive, i.e., discretizing
finely only where needed, either separate points only or make no guarantees of object separation. Our 2D algorithm
is the first to construct an object-resolving discretization that is hierarchical (saving memory) yet with a fully parallel
approach (saving time). We describe our algorithm, demonstrate experimental results, and discuss extension to 3D.
Our results show significant improvement over the current state of the art.

1. Introduction1

Constructing quadtrees on objects is an important2

task with applications in collision detection, distance3

fields, robot navigation, shape modeling, object descrip-4

tion, and other applications. Quadtrees built on objects5

most often model the objects themselves, providing a6

space-efficient representation of arbitrarily complex ob-7

jects. However, our work centers on using quadtrees to8

separate, or resolve, collections of closely spaced ob-9

jects, i.e., to construct a discretization such that no cell10

intersects more than one object. Such quadtrees can be11

thought of as modeling the space between objects.12

Modeling inter-object spacing is computationally13

straightforward when the spacing is large compared to14

the world bounding box. Approaches typically involve a15

uniform grid of the space, which leads to efficient com-16

putation that often uses graphics processors.17

Difficulties arise when objects are close together rel-18

ative to the size of the domain. An approach using19

a uniform grid would have excessive memory require-20

ments in order to resolve between objects because the21

uniformly sized grid cell must be small enough to fit be-22

tween objects at every location in the domain. Thus, an23

adaptive approach must be used for datasets of closely24

spaced objects.25
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To our knowledge, only one algorithm [1] computes26

an adaptive data structure that fully resolves between27

objects without using unreasonable amounts of mem-28

ory, but it does so in serial, with expected performance29

liabilities. A naive approach to parallelizing quadtree30

computation would be to assign all available compute31

units according to a coarse grid, then run the serial al-32

gorithm on each compute unit. While simple, there is33

potential for serious load imbalancing if the close ob-34

ject spacings are not uniformly distributed.35

This paper extends the work done by Edwards et al.36

[1] by computing the quadtree in parallel with an algo-37

rithm that is adaptive and independent of object distri-38

bution. Our algorithm, which is targeted for the GPU,39

performs an order of magnitude faster than the previous40

work and will be an important base for later distance41

transform and generalized Voronoi diagram computa-42

tion.43

Our algorithm has three main components:44

1. Construct a quadtree on object vertices using the45

Karras algorithm [2]46

2. Detect quadtree cells that intersect more than one47

object, which we call “conflict cells” (contribution)48

3. Subdivide conflict cells to resolve objects (contri-49

bution)50

Each step is done in parallel either on object vertices,51

object facets, or quadtree cells.52

Preprint submitted to Elsevier May 17, 2017



Modeling object separation is of some use in 2D53

(e.g. path planning), but it is a very important prob-54

lem in many 3D applications. Hierarchically subdivid-55

ing space between faceted objects in a principled paral-56

lel way is complex, and this paper lays the groundwork57

for our continuing efforts in 3D.58

2. Related work59

Serial In an early work, Lavender et al. [3] define and60

compute octrees over a set of solid models. Two sem-61

inal works build octrees on objects in order to com-62

pute the Adaptive Distance Field (ADF) on octree ver-63

tices. Strain [4] fully resolves the quadtree everywhere64

on the object surface, and Frisken et al. [5] resolve the65

quadtree fully only in areas of small local feature size.66

Both approaches are designed to retain features of a sin-67

gle object rather than resolving between multiple ob-68

jects, as is required for GVD computation. Boada et69

al. [6, 7] use an adaptive approach to GVD computa-70

tion, but their algorithm is restricted to GVDs with con-71

nected regions and is inefficient for polyhedral objects72

with many facets. Two other works are adaptive [8, 9]73

but are computationally expensive and are restricted to74

convex sites.75

Parallel Many recent works on fast quadtree construc-76

tion using the GPU are limited either to point sites77

[10, 2, 11] or to sites that don’t overlap octree cells [12].78

Most quadtree approaches that support surfaces are de-79

signed for efficient rendering and not inter-object reso-80

lution. Most of these approaches construct the quadtree81

on the CPU [13, 14, 15, 16], although Choi et al. [17]82

succeed in constructing k-D trees in parallel. Two works83

[18, 19] implement Adaptive Distance Fields in parallel84

on quadtrees but building the quadtree itself is done se-85

quentially. Yin et al. [20] compute the octree entirely on86

the GPU using a bottom-up approach by initially subdi-87

viding into a complete octree, resulting in memory us-88

age that is no better than using a uniform grid. Crassin89

and Green [21] build the octree top-down by perform-90

ing subdivisions at each level. The most similar work to91

what we do here is Kim and Liu’s method [22], which92

computes the quadtree on the barycenters of triangles,93

giving an approximation of our quadtree, but without94

fully resolving between objects. We are unaware of any95

GPU quadtree construction methods that are fully adap-96

tive and resolve between objects.97

3. Algorithm98

We refer to quadtree leaf cells that intersect two or99

more objects as “conflict cells.” A necessary and suf-100

ficient condition for a quadtree to resolve objects is to101

have no conflict cells. Our approach to computing such102

a quadtree is in two stages. We first build an initial103

quadtree, called the “vertex quadtree,” using a set S of104

point samples. We initialize S to be the object vertices.105

The second stage is to detect conflict cells in parallel,106

followed by augmenting S with sample points such that107

a subsequent quadtree built on S resolves conflict cells.108

If S changed, then we iterate (see section 3.4.4) which109

is necessary only if a conflict cell has multiple intersect-110

ing objects. The number of iterations is minimized by111

starting from an initial vertex quadtree. This two-stage112

approach enables us to resolve between objects fully in113

parallel regardless of object spacing, i.e., we do not it-114

erate through levels of the quadtree, subdividing as we115

go.116

Each step of our algorithm, with the exception of re-117

solving conflict cells, is independent of dimension and118

can be used for 3D octree applications. But since point119

sampling for conflict cell resolution is 2D we will use120

the term quadtree throught the algorithm description121

for consistency. Our algorithm assumes the objects are122

faceted where the facets are simplices.123

3.1. Build initial quadtree124

Our first step is to build a quadtree on the given set125

of vertices. We use the Karras algorithm [2] which be-126

gins by placing the given vertices on a Z-Order curve by127

computing each vertex’s cooresponding Morton code in128

parallel. Next, Karras sorts the converted points by us-129

ing a parallel radix sorter, which has a linear execution130

time. Our implementation uses the efficient four-way131

parallel radix sorter described by Ha et al. [23]. Once132

the Morton codes are sorted, the Z-Order curve can be133

exploited to construct a binary radix tree in a paral-134

lel bottom up manner by identifying longest common135

Morton code prefixes between neighboring points. This136

resultant binary radix tree can be analyzed in parallel137

to identify the size and structure of the required vertex138

quadtree. The strength of this approach lies in the fact139

that overall performance scales linearly with the number140

of cores, regardless of the distribution of points. That141

is, even if a large number of vertices are clustered in a142

small area, requiring deep quadtree subdivision, only a143

constant number of parallel calls need be made.144

3.2. Pruning the quadtree145

During Karras’ initial binary radix tree (BRT) con-146

struction, we can prune the BRT to simplify the resultant147

quadtree. This in turn simplifies the work complexity of148

conflict cell detection and reduces our overall memory149
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(a) (b)

Figure 1: (a) The initial quadtree built on the object vertices, in which
no quadtree cell contains more than one vertex, can be far more com-
plex than needed to resolve between objects. (b) After pruning the
quadtree. Quadtree cells can contain multiple vertices as long as they
all have the same label.

footprint. Assume we have a numeric vertex labeling150

such that each vertex is labeled to match the object it151

belongs to. The original BRT provided by Karras’ al-152

gorithm is used to generate a quadtree which separates153

vertices regardless of their label. Since our objective is154

to resolve between objects of different labels, we can155

proactively prune Karras’ initial BRT, and subsequently156

the initial quadtree (see figure 1) by allowing the gener-157

ated quadtree leaves to contain multiple vertices as long158

as those vertices have the same label.159

To prune the initial BRT efficiently, we label each160

BRT node C using the following criterion: if C is a leaf161

node that separates two vertices with identical labels, la-162

bel C to match the label of the vertices being separated.163

If C is a leaf node that separates two vertices having164

mismatched colors, label C as “required”. Lastly, if C165

is an internal node, i.e., it has children, mark it as “un-166

known”. This initial step can be done immediately after167

the Karras BRT construction without the need to invoke168

an additional kernel.169

We then propagate the BRT labels up the tree in par-170

allel, marking “unknown” nodes as “required” when the171

labels of the current node’s two child nodes don’t match.172

Labels are applied using an atomic compare and swap,173

and threads terminate if the current ancestor’s label was174

previously “unknown”. Finally, we generate quadtree175

nodes from only the required internal binary radix tree176

nodes.177

3.3. Identifying conflict cells178

After the pruning in 3.2, the Karras quadtree sepa-179

rates all differently labeled vertices in the dataset. Our180

goal is to separate differently labeled facets. We first181

need to identify what quadtree cells require further sub-182

division. We call these cells “conflict cells” (see figure183

2c). To efficiently identify conflict cells, we take advan-184

tage of the space filling Morton curve and the existing185

quadtree hierarchy to reduce the combinatoric complex-186

ity of intersection detection between facets and quadtree187

cells. We use the following approach.188

3.3.1. Initializing conflict cell detection189

Before we detect conflict cells we create a mapping190

from each quadtree cell c to all facets bounded by c,191

a technique similar in spirit to the fragment emission192

and sorting done by Pantaleoni [24]. We first find the193

“bounding cell” c f for a facet f , where the bounding194

cell is the smallest quadtree cell that completely con-195

tains f . For each facet f in parallel we determine lcp f ,196

which is the longest common prefix of the Morton codes197

of the vertices of f . Then, to find the bounding cell c f ,198

we iterate in parallel over each facet f and use lcp f to199

direct a search through the quadtree. Let F be the num-200

ber of facets. We allocate two parallel arrays of size F,201

BCells and FacetMap. As each c f is found, the index202

of c f is stored in the BCells array at index equal to the203

thread id. At the same time, we store the index of each204

facet in the FacetMap. Initially, FacetMap[i] = i (see205

figure 3a).206

Next, we perform a parallel radix sort on the paral-207

lel arrays (BCells and FacetMap) using the bounding208

cell addresses as the sort key (figure 3b). Finally, since209

each quadtree cell may bound multiple facets, we com-210

pute a range for each quadtree cell by comparing neigh-211

boring quadtree indices in the mapping in parallel (the212

(F/L)Facet array in figure 3b). We now have a map-213

ping from a quadtree cell c to facets bounded by c (fig-214

ure 3c).215

3.3.2. Conflict Cell Detection216

To identify conflicts, we begin by processing each217

leaf cell L in parallel using Algorithm 1. First, we set218

L’s color to -1, meaning it is unknown whether L is a219

conflict cell or not. Then, we traverse each direct ances-220

tor A of L using a Parent field stored in the quadtree data221

structure (line 3). For each ancestor traversed, we iter-222

ate over the facets bounded by A by using the quadtree223

cell to facet mapping computed in 3.3.1 (line 4).224

For each facet f discovered this way, we test for inter-225

section between f and L. If f intersects L and L’s color226

is -1, we copy f ’s color to L. Otherwise if f intersects L227

and L’s color does not match f ’s color, we set L’s color228

to -2, indicating that L is a conflict cell that must be re-229

solved. Note that in Algorithm 1, no atomic operations230

are required.231
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Figure 2: We have three objects, blue, red, and green with facets la-
beled A-I. (a) Initial pruned vertex quadtree. (b) Zoomed-in to the
region outlined by red in (a) and showing the boundary cell (BCell)
computation for each facet. (c) Conflict cells, which intersect more
than one object, are highlighted. (d) The new quadtree after conflict
resolution.
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Figure 3: (a) The bounding cells (BCells) are stored in an array ini-
tially sorted on facet index (letters are used here for clarity). The
quadtree array elements are structures which store child and par-
ent pointers (“C/P” in the figure). (b) We sort the BCells array us-
ing a parallel radix sort on BCell address for fast indexed access.
We then, in parallel on each element of the BCells array, store the
BCells/FacetMap indices of the first and last facets in a given quadtree
cell in FFacet and LFacet, respectively. (c) For a given quadtree cell,
we can find all contained facets for use in algorithm 1.

Algorithm 1: FIND CONFLICT CELLS
Input: Quadtree

1 for leaf cell L do in parallel
2 L.color = -1
3 foreach cell A in direct ancestors(L) do
4 foreach i in {FFacet[A]. . . LFacet[A]} do
5 f := Facets[FacetMap[i]]
6 if f intersects L then
7 if L.color == -1 then
8 L.color = f .color
9 L.facet[0] = f

10 end
11 else if L.color , f .color then
12 L.color = -2
13 L.facet[1] = f
14 end
15 end
16 end
17 end
18 end
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Figure 4: (a) A conflict cell with two lines from different objects. (b)-
(c) Fitting boxes such that any box intersecting both lines contains
at least one sample (red dots). (b) Fitting boxes such that any box
intersecting both lines contains at least two samples. This ensures that
a quadtree built from the samples using Karras’ algorithm (panel (d))
will have no leaf cells that intersect both lines, ensuring that the new
quadtree is locally free of conflict cells. (e)-(f) The adjacent case.
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3.4. Resolve conflict cells232

We present a conflict cell resolution algorithm for233

pairs of lines in 2D. For a conflict cell C, our approach234

is to find sample points inside the cell such that no leaf235

cells in a quadtree constructed over the sample points236

intersect both lines. In this section we derive equation237

(28) which computes the number of samples required238

to resolve the cell. We also derive equation (22) which239

computes the samples themselves. The power of our ap-240

proach lies in the fact that both expressions are closed-241

form and neither one is iterative, so we can evaluate the242

first in parallel over leaf cells and the second in parallel243

over all samples that we need to compute.244

To resolve a conflict cell C, we consider pairs of lines245

of differing labels that intersect C. Figure 4a shows two246

lines247

q(t) = q = q0 + tv (1)
r( f ) = r = r0 + f w (2)

along with a line

p(s) = p = p0 + su (3)

that bisects q and r. Our strategy will be to sample248

points P on p(s) (figure 4d) such that a quadtree built249

on S ∪ P will completely “separate” q and r, i.e., no de-250

scendent leaf of C will intersect both q and r. We do this251

by ensuring that P is sampled such that every box that252

intersects both q and r also intersects at least two points253

in P. Because Karras’ algorithm guarantees that every254

leaf cell intersects at most one point, we know that no255

leaf cell will intersect q and r and thus no leaf cell will256

be a conflict cell. We will find a series of boxes such that257

each box’s left-most intersection with p(s) is a sample258

point meeting the above criterion. In the following dis-259

cussion, px and py refer to the x and y coordinates of260

point p, respectively.261

We consider only cases where the slope of p is in the262

range 0 ≤ m ≤ 1. All other instances can be trans-263

formed to this case using rotation and reflection. We264

begin by fitting the smallest box centered on a point p265

that intersects both q and r. The smallest box sampled266

at point p(s) has edge length a(s) as shown in figure 4b.267

We break the problem of finding a(s) into two cases:268

1. The opposite case (figure 4b) is where wy > 0,269

so each box intersects q and r at its top-left and270

bottom-right corners, respectively.271

2. In the adjacent case (figure 4e), wy < 0, so the272

line intersections are adjacent at the top-left and273

bottom-left corners of the box.274

3.4.1. Finding a(s) – opposite case275

Given a point p(s), we wish to find a = a(s), which276

will give us the starting x coordinate for the next box.277

Consider the top-left corner of the box q(t(s)) = q(t)278

and the bottom-right corner r( f (s)) = r( f ).279

Because px(s) = qx(t),

t =
px(s) − qx

0

vx =
px

x − qx
0 + sux

vx (4)

Because our boxes are square,

r( f ) = r0 + f w = q0 + tv + a
[

1
−1

]
(5)

From (5),

f =
1

wy (qy
0 + tvy − a − ry

0) (6)

a = rx
0 + f wx − qx

0 − tvx (7)

Substituting equations (4) and (6) into equation (7) and
solving for a,

a(s) = α̂os + β̂o (8)

where

α̂o =
ux|w × v|

vx(wx + wy)
(9)

and

β̂o =
|w × v|(px

0 − qx
0) + vx(|r0 × w| + |w × q0|)
vx(wx + wy)

(10)

3.4.2. Finding a(s) – adjacent case280

Consider the top-left corner of the box q(t(s)) = q(t)
and the bottom-left corner r( f (s)) = r( f ). r( f ) is now
defined as

r( f ) = r0 + f w = q0 + tv + a
[

0
−1

]
(11)

Equations (4) and (6) remain the same while (7) be-
comes

0 = rx
0 + f wx − qx

0 − tvx (12)

Substituting equations (4) and (6) into equation (12) and
solving for a,

a(s) = α̂as + β̂a (13)

where

α̂a =
ux

vxwx (14)

and

β̂a =
wx(px

0 − qx
0) + |w × q0| + |r0 × w|

wx (15)
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3.4.3. Sampling281

In both the opposite and the adjacent cases, a(s) is of
the form a(s) = α̂s + β̂. We now use a(s) to construct a
sequence of values S = {s0, s1, s2, . . . , sn} that meet our
sampling criterion. We first construct the even samples
(see figures 4b and 4e). Given a starting point p(s0),

px(si+2) = px(si) + a(si) (16)

Substituting in equations (3) and (8)/(13),

px
0 + si+2ux = px

0 + si + α̂si + β̂ (17)

Solving for si+2 gives the recurrence relation

si+2 = αsi + β (18)

where
α = 1 +

α̂

ux (19)

and

β =
β̂

ux (20)

Constructing the odd samples is identical, except that
we start at

s1 =

(
1 +

α̂

2ux

)
s0 +

β̂

2
(21)

which is the point in the center of the first box in the282

x-dimension.283

We solve the recurrence relation (18) using the char-
acteristic polynomial to yield

si = k1 + k2α
i (22)

where the k variables are split into those for even values
of i and those for odd values of i, and are given as

keven
1 =

β

1 − α
(23)

kodd
1 =

β

1 − α
(24)

keven
2 =

αs0 + β − s0

α − 1
(25)

kodd
2 =

αs1 + β − s1

α − 1
(26)

The last step to formulating P for parallel computation
is to determine how many samples we will need. Let
p(sexit) be the point at which the line p exits the cell.

k1 + k2α
i < sexit (27)

results in

i < logα
sexit − k1

k2
(28)

(a) (b) (c)

Figure 5: Best and worst cases given two lines. The same number
of conflict resolution samples are generated regardless of where the
lines are located. (a) Base case: two lines can be resolved by a single
quadtree subdivision. (b) Worst case: the same two lines translated
slightly in y now require five subdivisions to be resolved. (c) The
number of cells generated from the shown resolution samples is within
a constant factor of the worst case.

3.4.4. Iteration284

Because conflict cell resolution only considers two285

facets at a time, we may have to iterate multiple times286

if more than two facets intersect a given cell. If new287

sample points were found then we add them to the cur-288

rent set S of sample points and return to building the289

quadtree from points (section 3.1). We finish when the290

only conflicts identified are at the maximum depth.291

3.5. Optimality292

Define an optimal final quadtree to be one in which293

only conflict nodes have children, and let an optimal294

final quadtree’s size be n total nodes. Our iterative295

sampling algorithm results in a quadtree that has a size296

within a constant factor of n in the worst case (see figure297

5). We omit the proof as well as an average case analysis298

because optimality can be achieved by simply removing299

unnecessary nodes in one final parallel pruning step.300

4. Implementation301

We have implemented1 our algorithm using OpenCL.302

Figure 6 shows the stages of the major kernels. Ev-303

ery kernel call is parallel on vertices, facets, quadtree304

nodes or Morton code bits. Our implementation uses305

64-bit Morton codes, which were sufficient for all of306

our datasets. There is no way of knowing a priori307

what the object spacing is going to be, however, 64-bit308

codes were sufficient for the most demanding datasets309

while retaining reasonable radix-sort timings. Choos-310

ing a large number of bits for the Morton code results311

in little or no wasted effort in later refinement, affecting312

the amount of later pruning only if intra-object vertex313

1Source code is available at www2.cose.isu.edu/~edwajohn/
research/pquad.
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Vertex Morton Codes
on vertices

Radix Sort
on bits

Binary Radix Tree
on vertices

BRT to Quadtree
on vertices

Look Up 
Quadnode from 

LCP
on facets

Get Facet LCPs
on facets

Radix Sort 
Quadnode to 
Facet by key 

on facets

Compute 
Quadnode 

ranges
on facets

Find Conflict 
Cells

on quadtree leaves

Sample Points
on conflict cells

Combine Points
clEnqueueCopyBuffer

Cells conflict?

No

Done

Yes

Figure 6: Kernel calls, with some calls omitted for clarity. The name
of the kernel is in larger font while the the elements on which the
parallelism runs are given in smaller font. The majority of calls are
facet- or vertex-parallel.

spacing is small compared to spacing between objects.314

The number of bits also has no effect on the number of315

conflict cells unless the Morton codes are too small to316

resolve vertices.317

Our implementation of the algorithm supports poly-318

gons and polylines which needn’t be manifold or con-319

nected. Intersecting lines are not handled as a special320

case, i.e., the quadtree is simply resolved to its maxi-321

mum depth. Special handling can be implemented per322

application as needed, e.g., for collision detection appli-323

cations.324

5. Results and conclusions325

All tests were run on an Intel i7 6500u 3.10 GHz dual326

core processor, 8 GB of memory and an Nvidia GTX327

1070 graphics card. Figure 7 shows results a simple toy328

dataset showing conflict cell detection and resolution.329

A very complex dataset with many objects at very dif-330

ferent scales is shown in figure 8. It demonstrates that331

our method can handle datasets far beyond the mem-332

ory limits of uniform grid approaches while still fully333

resolving between objects. The gears dataset (figure334

9) again shows a large domain-to-object-spacing ratio,335

as well as non-convexities. The vascular dataset shown336

in figure 10 demonstrates our method on polylines de-337

rived from biological image data, which is often noisy338

with non-manifoldness and intersections. Table 1 shows339

timings for our implementation compared to the previ-340

ous state-of-the-art. Our implementation is significantly341

faster and also generates fewer quadtree cells. See Ap-342

pendix A for a runtime complexity analysis.343

As can be seen in table 1, there is overhead with344

our approach: running our algorithm on small datasets345

yields smaller gains. In fact, our approach actually per-346

(a) (b)

Figure 7: (a) A toy dataset showing conflict cells after building the
quadtree from object vertices. (b) The toy dataset showing how sam-
ples are collected.

(a) (b) 1x zoom (c) 16x zoom

(d) 256x zoom (e) 4,000x zoom (f) 60,000x zoom

Figure 8: (a) A complex dataset with 470 objects at vastly different
scales in object size and spacing. (b)-(f) Complex dataset at different
zoom levels up to 60K magnification. This shows the importance of
an adaptive method such as a quadtree. A uniform grid would require
248 cells to resolve between objects. The quadtree shown here has
22,429 cells.

(a) (b) (c)

Figure 9: (a) A dataset of gears with close tolerance. The resolved
quadtree with sampled points is shown. (b) Showing just the quadtree
and sample points. (c) A zoomed-in image showing the close object
spacing compared to the large domain.
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(a) (b) (c)

Figure 10: A large set of uniquely labeled polygons constructed from
connected component analysis on a photograph of vascular cambium,
a type of plant tissue. (a) Initial vertex quadtree after pruning. (b) All
conflict cells of the initial quadtree. (c) After conflict cell resolution.
No quadtree cell intersects more than one object. Our method works
even though objects in this dataset are often non-manifold and have
self-intersections.

dataset objects object quadtree time
facets depth (millisec)

Ours Prev
Fig. 7a 5 24 9 5 3
Fig. 9 12 288 10 8 24
Fig. 8a 470 4943 24 40 277
Fig. 10 2162 39,338 12 36 376

Table 1: Table of quadtree computation statistics and timings. Ours
is the approach described in this paper and Prev is the approach by
Edwards et al. [1]. Columns are: objects - the number of objects in
the dataset; object facets - the number of line segments (2D) of all
objects in the dataset; quadtree depth - required quadtree depth in
order to resolve objects; time (ms) - milliseconds to build the quadtree

forms worse on the toy dataset. The power of our al-347

gorithm becomes obvious on large, complex datasets,348

where our performance time gains are significant.349

Figure 11 shows the results of a scaling study, where350

we increased the number of objects and facets by orders351

of magnitude. Our algorithm consistently shows tim-352

ings an order of magnitude faster than the state of the353

art. The approach of Edwards et al. failed on datasets354

with 106 facets or more.355

As noted in the introduction, our continuing work356

is in fast construction of octrees modeling inter-object357

space in 3D. Every step in our method has a straightfor-358

ward extension to 3D with the exception of point sam-359

pling for conflict resolution (see section 3.4), which is360

where we are focusing our efforts.361
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Appendix A. Complexity analysis441

Let M = |F| and N = |V |, where F are the object442

facets and V are the object vertices. Let D be the depth443

of the quadtree, and Dmax be the maximum depth of the444

quadtree. In this analysis we assume sufficient parallel445

units to maximize parallelization.446

Time complexity447

1. Build quadtree using Karras’ algorithm [2], includ-448

ing pruning - O(Dmax).449

2. Detect conflict cells450

(a) Build BCells array - O(D). Building of the ar-451

ray runs in parallel for each facet f . The facet452

looks at each vertex (we assume simplices453

with a constant number of dimensions), com-454

putes Morton codes and finds the longest455

common prefix among vertices. This requires456

looking at each bit, of which there are O(D).457

(b) Sort BCells array - O(Dmax). We use a par-458

allel radix sort with linear complexity depen-459

dent on the max quadtree depth.460

(c) Index BCells with quadtree data structure461

- O(D). This runs in parallel on leaf cell462

IDs and each kernel requires a search of the463

quadtree for a given cell ID, taking at most D464

steps.465

(d) Find facets that intersect each leaf cell -466

Worst case O(M + D), average case O(D). In467

unusual datasets, a single leaf cell will be in-468

tersected by O(M) facets. On average, how-469

ever, leaf cells intersect a small number of470

facets, and thus this step is dominated by the471

depth D of the quadtree due to visiting each472

ancestor of the leaf cell.473

3. Resolve conflict cells474

(a) Compute new sample points - O(1). The first475

step computes, in parallel over conflict cells,476

the number of samples required to resolve the477

cell using equation (28). The second step is478

to compute the samples themselves, which is479

done in parallel over all new samples to be480

computed, using equation (22).481

(b) S ← S ∪ S ′ - O(1).482

4. Iterate - O(Q) iterations. In the worst case, all483

facets intersect a single cell, requiring potentially484

Q = O(M2) iterations. In our testing, Q has not485

exceeded 4.486

The final complexity of each iteration is O(M + Dmax)487

worst case and O(log M + Dmax) average case. In prac-488

tice we must fix the depth of the quadtree to a constant489

value in order to use a predetermined integer size for the490

Morton codes, which brings the average case complex-491

ity to O(log M). Taking iteration into account, the final492

complexity is (Q log M) average case.493

Space complexity494

The primary data structures are shown in figure 3a.495

The quadtree data structure is size O(|S |) and the re-496

maining arrays are of size M. As |S | ≥ M, our final497

space complexity is O(|S |). The number of samples in498

S depends on the dataset. In 2D, in the worst case, the499

facets can form an arrangement of maximum number of500

intersections, which is M(M − 1)/2 = O(M2). If this501

is the case then we subdivide to the maximum quadtree502

depth at each intersection, causing a quadtree of size503

O(DM2).504
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